Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
2.
Genes Dis ; 11(3): 101026, 2024 May.
Article in English | MEDLINE | ID: mdl-38292186

ABSTRACT

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

3.
Bioact Mater ; 34: 51-63, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38186960

ABSTRACT

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

4.
Plast Reconstr Surg ; 153(2): 383e-396e, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37070824

ABSTRACT

BACKGROUND: Genetic research in nonsyndromic craniosynostosis remains limited compared with syndromic craniosynostosis. This systematic review aimed to comprehensively summarize the genetic literature of nonsyndromic craniosynostosis and highlight key signaling pathways. METHODS: The authors performed a systematic literature search of PubMed, Ovid, and Google Scholar databases from inception until December of 2021 using search terms related to nonsyndromic craniosynostosis and genetics. Two reviewers screened titles and abstract for relevance, and three reviewers independently extracted study characteristics and genetic data. Gene networks were constructed using Search Tool for Retrieval of Interacting Genes/Proteins (version 11) analysis. RESULTS: Thirty-three articles published between 2001 and 2020 met inclusion criteria. Studies were further classified into candidate gene screening and variant identification studies ( n = 16), genetic expression studies ( n = 13), and common and rare variant association studies ( n = 4). Most studies were good quality. Using our curated list of 116 genes extracted from the studies, two main networks were constructed. CONCLUSIONS: This systematic review concerns the genetics of nonsyndromic craniosynostosis, with network construction revealing TGF-ß/BMP, Wnt, and NF-κB/RANKL as important signaling pathways. Future studies should focus on rare rather than common variants to examine the missing heritability in this defect and, going forward, adopt a standard definition.


Subject(s)
Craniosynostoses , Humans , Craniosynostoses/genetics , Genomics , Signal Transduction/genetics , Databases, Factual
5.
Plast Reconstr Surg ; 153(1): 187-191, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37053443

ABSTRACT

SUMMARY: The use of high-fidelity stereolithographic models that accurately reflect patient-specific pathology has become commonplace in craniofacial surgery. Multiple studies have reported the use of commercially available three-dimensional (3D) printers that allow medical centers with limited resources to reconstruct 3D models comparable to industry-made counterparts. However, most models are printed using only a single filament, which portrays the surface craniofacial anatomy, but fails to highlight relevant intraosseous structures. This presents a significant limitation when used for preoperative planning and intraoperative guidance in surgical procedures requiring osteotomies, where knowledge of the precise location of critical structures is paramount to avoid injury. The authors report a novel technique for creating transparent 3D models of relevant intraosseous craniofacial anatomy at a cost that mitigates the financial burden of industrial 3D model or industrial 3D printer acquisition. Cases are presented to demonstrate the diverse applications of this technique, with accurate display of the tooth roots, the inferior alveolar nerve, and the optic nerve, to aid in preoperative planning of osteotomies. This technique enables production of low-cost, high-fidelity transparent 3D models with applications in preoperative planning for craniofacial surgery.


Subject(s)
Osteotomy , Printing, Three-Dimensional , Humans , Models, Anatomic
6.
J Craniofac Surg ; 35(1): 223-227, 2024.
Article in English | MEDLINE | ID: mdl-37889873

ABSTRACT

Unilateral condylar hyperplasia (UCH) results in facial asymmetry, malocclusion, and temporomandibular joint dysfunction. Treatment consists of both surgical and orthodontic intervention. A review was performed for 4 patients with UCH who underwent digital surgical planning (DSP)-assisted condylectomy. All patients were female, aged 14 to 35 years at the time of operation with facial asymmetry and class III malocclusion. None of the patients had prior treatment and all had perioperative orthodontic appliances to provide fixation and postoperative elastic therapy. All patients underwent DSP-guided condylectomy, and intraoperative surgical cutting guides were used for 3 of the patients. All had significant improvement in facial symmetry and occlusion. None had recurrence, and additional intervention has not been required. If UCH is recognized before marked secondary changes in the maxilla, mandible, and occlusion, future orthognathic surgery may be potentially obviated. Craniomaxillofacial surgeons should consider using DSP and surgical guides in the treatment of UCH.


Subject(s)
Bone Diseases , Malocclusion , Humans , Female , Male , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/surgery , Mandibular Condyle/pathology , Facial Asymmetry/diagnostic imaging , Facial Asymmetry/surgery , Facial Asymmetry/pathology , Hyperplasia/surgery , Hyperplasia/pathology , Mandible , Malocclusion/pathology , Bone Diseases/pathology
7.
Genes Dis ; 10(4): 1687-1701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397523

ABSTRACT

Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.

10.
Genes Dis ; 10(4): 1351-1366, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397543

ABSTRACT

Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.

11.
Nat Biomed Eng ; 7(11): 1514-1529, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37308586

ABSTRACT

Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Mice , Humans , Animals , Chromatin , Constriction , Bone Regeneration
12.
PLoS Comput Biol ; 19(6): e1011227, 2023 06.
Article in English | MEDLINE | ID: mdl-37347795

ABSTRACT

Craniosynostosis is a condition with neurologic and aesthetic sequelae requiring invasive surgery. Understanding its pathobiology requires familiarity with the processes underlying physiologic suture closure. Animal studies have shown that cyclical strain from chewing and suckling influences the closure of cranial vault sutures, especially the metopic, an important locus of craniosynostosis. However, there are no human data correlating strain patterns during chewing and suckling with the physiologically early closure pattern of the metopic suture. Furthermore, differences in craniofacial morphology make it challenging to directly extrapolate animal findings to humans. Eight finite-element analysis (FEA) models were built from craniofacial computer tomography (CT) scans at varying stages of metopic suture closure, including two with isolated non-syndromic metopic craniosynostosis. Muscle forces acting on the cranium during chewing and suckling were simulated using subject-specific jaw muscle cross-sectional areas. Chewing and suckling induced tension at the metopic and sagittal sutures, and compressed the coronal, lambdoid, and squamous sutures. Relative to other cranial vault sutures, the metopic suture experienced larger magnitudes of axial strain across the suture and a lower magnitude of shear strain. Strain across the metopic suture decreased during suture closure, but other sutures were unaffected. Strain patterns along the metopic suture mirrored the anterior to posterior sequence of closure: strain magnitudes were highest at the glabella and decreased posteriorly, with minima at the nasion and the anterior fontanelle. In models of physiologic suture closure, increased degree of metopic suture closure correlated with higher maximum principal strains across the frontal bone and mid-face, a strain regime not observed in models of severe metopic craniosynostosis. In summary, our work provides human evidence that bone strain patterns from chewing and suckling correlate with the physiologically early closure pattern of the metopic suture, and that deviations from physiologic strain regimes may contribute to clinically observed craniofacial dysmorphism.


Subject(s)
Craniosynostoses , Mastication , Animals , Humans , Infant , Biomechanical Phenomena , Cranial Sutures/physiology , Craniosynostoses/surgery , Sutures
17.
Regen Biomater ; 10: rbac095, 2023.
Article in English | MEDLINE | ID: mdl-36683747

ABSTRACT

Silk as a natural biomaterial is considered as a promising bone substitute in tissue regeneration. Sericin and fibroin are the main components of silk and display unique features for their programmable mechanical properties, biocompatibility, biodegradability and morphological plasticity. It has been reported that sericin recombinant growth factors (GFs) can support cell proliferation and induce stem cell differentiation through cross-talk of signaling pathways during tissue regeneration. The transgenic technology allows the productions of bioactive heterologous GFs as fusion proteins with sericin, which are then fabricated into solid matrix or hydrogel format. Herein, using an injectable hydrogel derived from transgenic platelet-derived GF (PDGF)-BB silk sericin, we demonstrated that the PDGF-BB sericin hydrogel effectively augmented osteogenesis induced by bone morphogenetic protein (BMP9)-stimulated mesenchymal stem cells (MSCs) in vivo and in vitro, while inhibiting adipogenic differentiation. Further gene expression and protein-protein interactions studies demonstrated that BMP9 and PDGF-BB synergistically induced osteogenic differentiation through the cross-talk between Smad and Stat3 pathways in MSCs. Thus, our results provide a novel strategy to encapsulate osteogenic factors and osteoblastic progenitors in transgenic sericin-based hydrogel for robust bone tissue engineering.

18.
Pediatr Discov ; 1(2)2023.
Article in English | MEDLINE | ID: mdl-38370424

ABSTRACT

Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.

19.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36408946

ABSTRACT

Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.


Subject(s)
Craniosynostoses , Skull , Humans , Skull/metabolism , Cranial Sutures/metabolism , Craniosynostoses/genetics , Craniosynostoses/metabolism , Homeostasis , Signal Transduction
20.
R Soc Open Sci ; 9(11): 220438, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36405636

ABSTRACT

Biomechanical and clinical studies have yet to converge on the optimal fixation technique for angle fractures, one of the most common and controversial fractures in terms of fixation approach. Prior pre-clinical studies have used a variety of animal models and shown abnormal strain environments exacerbated by less rigid (single-plate) Champy fixation and chewing on the side opposite the fracture (contralateral chewing). However, morphological differences between species warrant further investigation to ensure that these findings are translational. Here we present the first study to use realistically loaded finite-element models to compare the biomechanical behaviour of human and macaque mandibles pre- and post-fracture and fixation. Our results reveal only small differences in deformation and strain regimes between human and macaque mandibles. In the human model, more rigid biplanar fixation better approximated physiologically healthy global bone strains and moments around the mandible, and also resulted in less interfragmentary strain than less rigid Champy fixation. Contralateral chewing exacerbated deviations in strain, moments and interfragmentary strain, especially under Champy fixation. Our pre- and post-fracture fixation findings are congruent with those from macaques, confirming that rhesus macaques are excellent animal models for biomedical research into mandibular fixation. Furthermore, these findings strengthen the case for rigid biplanar fixation over less rigid one-plate fixation in the treatment of isolated mandibular angle fractures.

SELECTION OF CITATIONS
SEARCH DETAIL
...